Prof. Dr. Michael Gütschow

Universität Bonn
Pharmazeutisches Institut
Pharmazeutische Chemie I
An der Immenburg 4
D-53121 Bonn

Tel: +49 228 732317
Fax: +49 228 732567

Sie sind hier: Startseite AK Gütschow Forschung


  • Development of low-molecular inhibitors of proteases and esterases (with cysteine proteases, human serine proteases from leukocytes and mast cells, membrane-bound serine proteases as well as serine esterases as main target enzymes)


A gorge-spanning, high-affinity cholinesterase inhibitor to explore β-amyloid plaques (Elsinghorst, P.W. et al. Org. Biomol. Chem. 2009, 7, 3940-3946).

brunsvicamide b

Model of the cyanobacterial cyclic peptide brunsvicamide B bound to the active site of human leukocyte elastase (Sisay, M.T. et al. ChemMedChem 2009, 4, 1425-1429).


Synthesis and radiopharmacological characterization of a fluorine-18-labelled azadipeptide nitrile as PET-tracer for cathepsin imaging in vivo (Löser, R. et al. ChemMedChem 2013, 8, 1330-1344).   


Janus Inhibitors 3

A bisbenzamidine phosphonate as a Janus-faced inhibitor for trypsin-like serine proteases (Häußler, D. et al. ChemMedChem 2015, 10, 1641-1646).


  • Characterization of the key role of the membrane-bound type II transmembrane serine protease matriptase-2 in iron homeostasis; analysis of matriptase-2 activity regulation; identification of putative interaction partners of matriptase-2


By cleaving hemojuveline (m-HJV), the bone morphogenetic protein (BMP) co-receptor, matriptase-2 downregulates SMAD signaling leading to suppressed hepcidin expression and increased iron plasma levels (for a review, see: Stirnberg, M. and Gütschow, M. Curr. Pharm. Des. 2013, 19, 1052-1061).


Phosphono Bisbenzguanidines as Irreversible Dipeptidomimetic Inhibitors and Activity-Based Probes of Matriptase-2 (Häußler, D. et al. Chem. Eur. J. 2016).



Characterization of low-molecular weight ligands using active-site-mutated variants of matriptase-2 (Maurer, E. et al. ChemMedChem 2012).



  • Mechanism of the enzyme-inhibitor interactions, enzyme kinetics, e.g. analysis (UV/Vis spectroscopy, fluorescence, HPLC) of the reactions of enzymes with mechanism-based inhibitors and artificial substrates



Kinetics of the cholesterol esterase-catalyzed hydrolysis of 6,7-dihydro-2-dimethylamino-4H,5H-cyclopenta[4,5]thieno[2,3-d][1,3]oxazin-4-one. Left: Depletion of the compound is illustrated by monitoring UV/VIS-spectra at 10 min-intervals. Right: Hydrolysis of the compound was followed at 350 nm (Pietsch, M. and Gütschow, M. J. Med. Chem. 2005, 48, 8270-8288).


  • Development of synthetic inhibitors of angiogenesis and TNF-alpha production


  • Activity-based probes for proteases

    activity based probes

    An activity-based probe to chemically introduce the green fluorescence for the ex vivo imaging of human cysteine cathepsins (Frizler, M. et al. Org. Biomol. Chem. 2013, 11, 5913-5921.

  • Synthesis and structural elucidation of bioactive heterocycles, investigations on heterocyclizations, ring cleavages, trapping reactions.


Investigations on alternative ring closures and analysis of rotational barriers (Häcker, H. G. et al. Synthesis 2009, 1195-1203).


An access to biologically active aza-Freidinger lactams and E-locked analogs (Ottersbach, P. A. et al. Org. Lett. 2013, 15, 448-451). 




Regioselective sulfonylation and intramolecular N- to O-sulfonyl migration as verified by kinetic and crossover experiments (Mertens, M. D. et al. J. Org. Chem. 2013, 78, 8966-8979. 


  • Aminobarbituric acid-hydantoin rearrangements


    Formation of trisubstituted hydantoins (Meusel, M. et al. J. Org. Chem. 2003, 68, 4684-4692).

  • Structure-activity relationships of biologically active heterocycles and structural optimization using molecular modelling


Docking of 2-(4-methylpiperazinyl)-4H-3,1-benzoxazin-4-one toward the active site of cathepsin G. (Gütschow, M. et al. Arch. Biochem. Biophys. 2002, 402, 180-191).


Limiting the Number of Potential Binding Modes by Introducing Symmetry into Ligands: Structure-Based Design of Inhibitors for Trypsin-Like Serine Proteases (Furtmann, N. et al. Chem. Eur. J. 2016, 22, 610-625).